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Abstract

Regional groundwater flow strongly depends on groundwater recharge and hydraulic
conductivity. Both are spatially variable fields, and their estimation is an ongoing topic
in groundwater research and practice. In this study, we use the Ensemble Kalman filter
as an inversion method to jointly estimate spatially variable recharge and conductivity5

fields from head observations. The success of the approach strongly depends on the
assumed prior knowledge. If the structural assumptions underlying the initial ensem-
ble of the parameter fields are correct, both estimated fields resemble the true ones.
However, erroneous prior knowledge may not be corrected by the data. In the worst
case, the estimated recharge field resembles the true conductivity field, resulting in a10

model that meets the observations but has very poor predictive power. The study ex-
emplifies the importance of prior knowledge in the joint estimation of parameters from
ambiguous measurements.

1 Introduction

Regional groundwater flow depends on spatially variable properties of the subsurface,15

notably the hydraulic conductivity field, and boundary conditions such as groundwater
recharge. In practical groundwater-modeling applications, parameters of both aquifer
properties and boundary conditions are estimated from measurements of hydraulic
heads at a limited number of observation locations (e.g. Hill and Tiedeman, 2007).
While many theoretical studies on parameter estimation in aquifers have concentrated20

on the assessment of the spatially variable hydraulic-conductivity field, also groundwa-
ter recharge is known to be highly variable in both time and space (e.g. de Vries and
Simmers, 2002). Among the different techniques of estimating recharge reviewed by
Scanlon et al. (2002), we consider here numerical approaches in which measured time
series of hydraulic head are used to estimate groundwater recharge. The key question25

to be addressed in the present study is under which conditions it is possible to infer
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both the recharge field (a space-time function) and the spatial distribution of hydraulic
conductivity from the same data set of hydraulic-head measurements.

In engineering practice, the model domain is typically subdivided into a small num-
ber of zones with given geometry, and uniform values of the material properties are
assigned to each zone. Likewise, the land-surface is subdivided into zones with uni-5

form recharge values, reflecting land use, soil types, and local climate variability. As an
alternative, parameter values may be estimated at a limited number of points and inter-
polated in between (e.g. Doherty, 2003). By construction, these approaches can only
determine spatial structures of the parameter fields meeting the prescribed shapes. A
particular difficulty of this approach is that the variability within the given zones may be10

bigger than between the zones, while the internal variability is completely neglected in
the parameter estimation.

The estimation of hydraulic conductivity as a continuous field has been intensively
investigated in the past (see for example the reviews of Sanchez-Vila et al., 2006; Vrugt
et al., 2008 and recently Zhou et al., 2014). In these approaches discretization of the15

domain leads to a formal number of parameters to be estimated that is identical to the
number of cells or grid points. Typical 2-D applications result in O (104) parameters,
whereas 3-D numerical domains may easily be made of O (106) cells. As the number
of measurement points is by orders of magnitude smaller, this inverse problem is in-
herently ill-posed without additional constraints. Some authors therefore rely on flexible20

sets of shapes, such as polynomial trends or Voronoi polygons (e.g. Tsai et al., 2003a,
b) rather than estimating O (104–106) parameter values. In standard geophysical inver-
sion, Tikhonov regularization is the common approach to estimate distributed parame-
ter fields from a limited set of measurements. Here, the parameters are assumed to be
continuous spatial functions, but large gradients, curvatures, or deviations from prior25

values are penalized (applications to subsurface hydrology are given by Doherty and
Johnston, 2003; Tonkin and Doherty, 2005; Doherty and Skahill, 2006, among others).
In subsurface hydrology, however, the geostatistical framework is more common. Ki-
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tanidis (1997) and independently Maurer et al. (1998) showed that the two approaches
are mathematically equivalent to each other.

In geostatistical inversion, the parameter field to be estimated is assumed to be an
autocorrelated random space function. This prior knowledge is used in Bayesian infer-
ence, where the statistical distribution of the parameters is conditioned on the measure-5

ments of dependent quantities, such as hydraulic heads. A variety of schemes targets
a single smooth spatial distribution approximating the conditional mean of the parame-
ter field using Gauss-Newton- or conjugate-gradient-type of estimation schemes (e.g.
Yeh and Yoon, 1981; Kitanidis and Lane, 1985; Zou et al., 1993; Li and Elsworth, 1995;
Kitanidis, 1995; Yeh et al., 1996; Aschenbrenner and Ostin, 1995; McLaughlin and10

Townley, 1996; Spedicato and Huang, 1997; Loke and Dahlin, 2002). These methods
can be extended to the generation of multiple conditional realizations by the method
of smallest modification (e.g. RamaRao et al., 1995; Gómez-Hernández et al., 1997).
However, the computational costs to obtain a single conditional realization is identi-
cal to that of the smooth best estimate. Also, the Gauss-Newton method requires the15

evaluation of the sensitivity of each measurement with respect to all parameter values,
involving the solution of as many adjoint problems as there are measurements, which
may become unbearable in case of many measurements, such as those obtained from
transient processes. In the context of the present study it may be noteworthy that many
geostatistical approaches have focused on the exclusive estimation of hydraulic con-20

ductivity, some include storativity (e.g. Gómez-Hernández et al., 1997; Kuhlman et al.,
2008; Li et al., 2007), but most assume that the boundary conditions are deterministic.
An exception is Hendricks Franssen et al. (2004) who used the geostatistical approach
of sequential self calibration to jointly estimate the fields of hydraulic conductivity and
groundwater recharge from head measurements.25

In groundwater hydrology, sequential data assimilation and Kalman filter methods
have been used since long (e.g. Ferraresi et al., 1996; Eppstein and Dougherty, 1996;
Hantush and Mariño, 1997). Particularly, and increasingly, popular is the Ensemble
Kalman filter (EnKF) (Evensen, 1994) or versions thereof. Although the EnKF was pri-
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marily constructed to update model-state variables, in subsurface hydrology it is com-
monly used to estimate hydraulic conductivity. For this purpose Hendricks Franssen
and Kinzelbach (2008), Drécourt et al. (2006), Tong et al. (2010, 2011), Xu et al.
(2013a, b), Panzeri et al. (2015) all showed that the use of head observations in an
EnKF framework can help improving the conductivity estimates, while Crestani et al.5

(2013) and Tong et al. (2013), among others, considered tracer tests for the same pur-
pose. Most parameter estimations used 2-D models, as these are conceptually simpler,
faster and easier to constrain and display. However, EnKF has also successfully been
applied to infer 3-D hydraulic-conductivity fields (e.g. Schöniger et al., 2012).

An important step in setting up an EnKF to estimate parameters is the choice of10

initial ensemble. This choice is the most straight forward way of allowing prior infor-
mation, such as ideas about correlation lengths, mean values or spatial pattern, to
influence the filter process. From a technical point of view, the issue of initial sampling
is how to represent the prior knowledge in an ensemble that is as small as possible, by,
for example, adding ensemble subspace restriction and requirements on the sampling15

(e.g, Evensen, 2004; Oliver and Chen, 2008). From a practical point of view, espe-
cially in subsurface modeling, the issue is that our prior knowledge of the parameters,
their mean values, deterministic trends, and spatial correlation structure is often lim-
ited. This may be seen as a more severe problem than choosing a sufficiently large
ensemble size to actually capture the assumed variability by the ensemble. To over-20

come the limited knowledge about true parameters values, the use of synthetic test
cases for methods testing and evaluation is very common in subsurface hydrology (e.g.
Schlüter et al., 2012; Schelle et al., 2013). Here, the prior knowledge is only limited to
what the modeler considers a reasonable assumption and it is not uncommon in the
groundwater-EnKF context that the synthetic true parameter field is a single realization25

generated the same way as the initial ensemble (e.g. Huang et al., 2008; Tong et al.,
2011, 2013; Vogt et al., 2012; Panzeri et al., 2014; Zhou et al., 2014). Hence, perfect
knowledge about the statistics of the estimated parameters is implicitly assumed, which
is a highly unrealistic assumption. The impact of the prior assumptions in groundwater
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modeling were considered, for example, by Li et al. (2012) who concluded that it was
possible to estimate reasonable log-conductivity fields using the EnKF despite wrong
priors, although the result was worse then when using correct information.

In this work we study the impact of the prior knowledge when jointly estimating con-
ductivity and recharge. We use an EnKF setup in which the initial ensemble is drawn5

using different assumptions of the spatial pattern of the parameters. Section 2 dis-
cusses why the conductivity and the recharge are so difficult to estimate jointly if only
pressure-head data is available. Section 3 explains the Ensemble Kalman filter and the
synthetic example used throughout this paper, while results and discussions are found
in Sect. 4. We end with conclusions in Sect. 5.10

2 Theory

In regional-scale groundwater-flow problems, we typically rely on the validity of the
Dupuit assumption, stating that variations in hydraulic head and groundwater velocity
are restricted to the horizontal directions. Under this condition, the depth-averaged,
two-dimensional groundwater-flow equation for a phreatic aquifer reads as:15

Sy
∂h
∂t
−∇ · (K (h− z0)∇h) = R (1)

subject to initial and lateral boundary conditions. Sy (x) [–] is the specific-yield field,

which is the drainage-effective porosity of the formation, K (x) [L T−1] denotes the
depth-averaged hydraulic-conductivity field, R(x, t) [L T−1] is the field of groundwater
recharge, z0(x) [L] denotes the geodetic height of the aquifer bottom, h(x, t) [L] is the20

hydraulic-head field to be simulated, t [T] is time, and x [L] is the vector of horizontal
spatial coordinates.

The term K (h− z0) may be interpreted as a transmissivity field T (x, t) [L2 T−1], vary-
ing in space and time. We now consider a confined surrogate aquifer with an assumed
transmissivity field Tass(x) [L2 T−1] that differs from the true one (e.g. an incorrectly25
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estimated transmissivity field). The logarithm of the scaling factor between the two
transmissivities is denoted f (x, t) [–]:

f = ln
(
K × (h− z0)

Tass

)
. (2)

Substituting Eq. (2) into Eq. (1) yields:

Sy
∂h
∂t
−∇ · (Tass exp(f )∇h) = R. (3)5

Applying the chain-rule of differentiation to the divergence in Eq. (3), the product rule
of differentiation to ∇exp(f ), and dividing by exp(f ) results in:

exp(−f )Sy︸ ︷︷ ︸
:=Sapp

∂h
∂t
−∇ · (Tass∇h) = exp(−f )R +∇f · ∇hTass︸ ︷︷ ︸

:=Rapp

(4)

⇒ Sapp
∂h
∂t
−∇ · (Tass∇h) = Rapp (5)

subject to the same initial and lateral boundary conditions as above. In Eq. (5), Sapp(x,10

t) [–] and Rapp(x, t) [L T−1] are apparent specific-yield and groundwater-recharge fields.
Equation (5) results in exactly the same hydraulic-head distribution as the original
groundwater-flow Eq. (1), even though the transmissivity field is different. Note that
exp(−f ) is positive, so that the apparent specific yield Sapp remains positive, whereas
no sign restrictions apply to ∇f · ∇h, resulting in both positive and negative Rapp val-15

ues. In case of a phreatic aquifer, the true transmissivity varies with hydraulic head, so
that the apparent parameters change with time. If the water-filled thickness of the true
aquifer does not change with time, which is the case for confined aquifers, the apparent
fields are time-invariant.

The derivation given above exemplifies that the same hydraulic-head field can be ob-20

tained with different hydraulic-conductivity fields by modifying recharge and, in the case
5571
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of transient flow, the specific yield. Noteworthy is that the apparent recharge depends
on the gradient of the original transmissivity field. Hence, a large – positive or neg-
ative – apparent recharge is expected at locations where the transmissivity changes
drastically. Though we have shown that modifications of recharge and specific yield
can always replace the conductivity, the opposite case is not guaranteed, because the5

conductivity has clear physical limitations, notably it cannot be negative.
The fact that conductivity variation can be exchanged by recharge and specific-yield

variations renders the joint estimation of hydraulic conductivity, recharge (and specific
yield) an inherently ill-posed problem even when the hydraulic-head field is known at
every point in the domain (and every time point).10

We may illustrate the problem by the example of an unconfined aquifer at steady
state, shown in Fig. 1. The original simulation (left column in Fig. 1) exhibits a square-
shaped inclusion of low permeability in an otherwise uniform high permeability field
(first row; two orders of magnitude difference in K ), a constant low recharge rate (sec-
ond row) and a significant head drop from west to east. The resulting head field is15

shown in the third row of Fig. 1, and the corresponding field of Darcy velocities in the
fourth row of Fig. 1.

If the inclusion is removed, and the recharge remains the same, the system shows a
perfectly homogeneous behavior (middle column of Fig. 1). The third column in Fig. 1,
on the other hand, shows exactly the same hydraulic-head field as the original sim-20

ulation, but the permeability field is uniform, whereas the recharge field shows strong
fluctuation. From Fig. 1 we can note that, in accordance with Eq. (4), the strong positive
and negative recharge rates are introduced at the interface of the removed inclusion.
Also, while the head fields of the original and surrogate models are identical, the veloc-
ity fields are quite different, because the conductivities are different. The latter implies25

that transport would be strongly different between the two cases. It becomes also clear
that, without additional constraints, a unique joint estimation of both recharge and con-
ductivity fields is strictly impossible.
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In classical model calibration, the ambiguity between transmissivity and groundwa-
ter recharge may cause problems of ill-posedness, but assuming presumably known
zones with block-wise uniform parameter values restricts the solution of the inverse
problem. As example, the strong positive and negative recharge values of the surro-
gate model in Fig. 1 would most likely not be obtained in standard model calibration5

because the recharge zones would hardly be chosen as embedded rectangular frames.
In shape-free inversion, using either Tikhonov regularization or geostatistical methods,
by contrast, the solution space is much less restricted and chances that unresolved
transmissivity variations are traded for recharge fluctuations are in principle fairly high.
The question thus arises under which conditions the estimated fields are reasonable10

despite the ambiguity of aquifer properties and boundary conditions.

3 Methods

3.1 Kalman filter

We denote the vector of all parameters (recharge values and log-hydraulic conduc-
tivities of all cells) Φ. Prior to considering measurements, they are assumed to be15

random functions following a multi-Gaussian distribution, which is fully characterized
by the prior mean µ′Φ and covariance matrix P′ΦΦ. If we assume that the covariance
function P ′ΦΦ(h) is stationary with the distance vector h and known structural parame-
ters (variance, correlation lengths, rotation angles), the element (i , j ) of the covariance
matrix P′ΦΦ is P ′ΦΦ(x2 −x1). The full matrix is constructed by all grid points.20

The vector of simulated hydraulic heads ht at time level t depends on the heads
ht−1 at the previous time level and on the parameters Φ. Because the old heads ht−1
depend on Φ, they are random variables, too. In the combination of data assimilation
and parameter estimation applied here, the vector of all simulates states (the heads
ht in all cells) and the vector of all parameters Φ are concatenated to a single vector25

xt of states and parameters, assumed to be random multi-Gaussian functions with
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unconditional mean µ′x and covariance matrix P′xx, in which the prior statistics of ht
are obtained by linearized uncertainty propagation of the statistics of ht−1 and Φ.

For convenience, we denote running the model and simulating the observations
(which is here just picking the heads at the observation locations) as f t(ht−1, xt). This
model outcome is contrasted to the measurements of heads at time level t, here de-5

noted yt. The true (unknown) heads at the measurement locations are considered to
be a vector of random variables with a multi-Gaussian distribution, characterized by the
measurement vector yt as mean and the covariance matrix R, reflecting measurement
error.

Since we assume multi-Gaussian distributions, finding the best conditional estimate10

µ
′′
x , of the entire head field at the new time level and the parameters by application of

Bayes’ theorem results in minimizing the following objective function W (xt):

W (xt) =
(
xt −µ′xt

)T
P′−1
xtxt

(
xt −µ′xt

)
+
(
f t
(
ht−1,xt

)
−yt
)TR−1 (f t (ht−1,xt

)
−yt
)

(6)

which is done by setting the derivative ofW (x) to zero. In the linearized version, f t(ht−1,
xt) is linearized about the prior mean µ′xt , and the linearized conditional covariance15

matrix P′′xtxt of xt is obtained by inverting the Hessian of W (xt), using the same lin-
earization. Kalman filtering is based on these approximations. Here, the data are suc-
cessively accounted for, considering one time level after the other. Then, the posterior
mean µ′′xt and covariance matrix P′′xtxt of time level t are propagated to the next time
level t+1 to obtain the corresponding prior mean and covariance matrix.20

By applying rules of matrix identities it can be shown that linearization about the prior
mean µ′xt leads to the following expression for the conditional mean and covariance
matrix:

µ′′xt = µ
′
xt
+P′xtyt

(
P′ytyt +R

)−1(
yt − f t

(
µht−1

,µ′xt

))
(7)

P′′xtxt = P′xtxt −P′xtyt

(
P′ytyt +R

)−1
P′ytxt (8)25
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in which P′ytxt =JP′xtxt is the cross-covariance matrix between yt and xt, P′xtyt =P′Tytxt ,

and P′ytyt =JP′xtxt J
T is the propagated covariance matrix of yt, expressing the uncer-

tainty of yt caused by the uncertainty of xt. J denotes the sensitivity matrix of f t with
respect to xt, derived about the prior mean.

The scheme described so far is known as extended Kalman filter. It relies on lin-5

earization about the prior mean and has the disadvantages that the full sensitivity
matrix J must be evaluated, which can be computationally very costly. Also, already
slight nonlinearities in f t(ht−1, xt) imply that the propagated covariance matrices are
not correct.

A popular alternative to the original Kalman filter is the Ensemble Kalman filter10

(EnKF) (Evensen, 1994), in which the linearization is performed about an entire en-
semble of state and parameter values, and no sensitivity matrices are computed. The
prior statistics are given by:

µ′xt =
1
n

n∑
i=1

x′
(i )
t (9)

µ′yt =
1
n

n∑
i=1

f t

(
h′′

(i )
t−1,x′(i )t

)
(10)15

P′xtxt =
1
n

n∑
i=1

(
x′

(i )
t −µ

′
xt

)
⊗
(
x′

(i )
t −µ

′
xt

)
(11)

P′xtyt =
1
n

n∑
i=1

(
x′

(i )
t −µ

′
xt

)
⊗
(
f t

(
h′′

(i )
t−1,x′′(i )t

)
−µ′yt

)
(12)

P′ytyt =
1
n

n∑
i=1

(
f t

(
h′′

(i )
t−1,x′(i )t

)
−µ′yt

)
⊗
(
f t

(
h′′

(i )
t−1,x′(i )t

)
−µ′yt

)
(13)

in which n is the number of ensemble members, the superscript (i ) denotes the
i th member, and a⊗b is the tensor product of vectors a and b. As before, the prior20
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values are denoted by a single prime, and the posterior by a double prime. Upon ini-
tialization, the original ensemble members x(i )

0 are drawn from the unconditioned multi-
Gaussian distribution of x, whereas the updating of the individual ensemble members
follows the procedure outlined above:

x′′
(i )
t = x′(i )t +bP′xtyt

(
P′ytyt +R

)−1(
yt +ε

(i ) − f t
(
h′′

(i )
t−1,x′(i )t

))
(14)5

in which ε(i ) is a vector of random observation noise drawn from a multi-Gaussian
distribution with zero mean and covariance matrix R. The factor b is the so called
damping parameter (e.g. Hendricks Franssen and Kinzelbach, 2008) which serves to
slow down the update of states and parameters. It is an ad-hoc tuning parameter that it
is primarily required for small ensemble sizes; few guidelines exist on how to select it.10

In this work, the damping is set to 0.6 for the updates of the head values and 0.05 for
the parameter update, though since the ensemble size is large and there are many
temporal observations (see below), the choice is not crucial in any sense. For a more
in-depth description of the filter algorithm, the interested reader can consult Evensen
(2003) or Burgers et al. (1998) for general filter details or Erdal et al. (2014) and Erdal15

(2014) for in-depth details on the actual implementation used in this study.
It should be noted that the ensemble Kalman filter still relies on the same assump-

tions as the original Kalman filter. Notably, the combined vector of states, parameters,
and observations is assumed to be a multi-Gaussian random variable, which means
that xt is multi-Gaussian, the model f t depends linearly on xt, and the measurement20

error is multi-Gaussian, too. These conditions are not strictly met, so that the EnKF so-
lution is only a linearized estimate. However, the repeated application over many time
steps as well as the large ensemble sizes used in this work alleviates the effects of
nonlinearity to some extent. Further, the model considered is only weakly nonlinear, so
that in total the effects of the linearlizations are likely small compared to other sources25

of errors (e.g. prior uncertainties, as discussed later).
A second important constraint is that the scheme, like any other Bayesian method,

depends on the choice of the unconditional mean and covariance structure of the pa-
5576

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/12/5565/2015/hessd-12-5565-2015-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/12/5565/2015/hessd-12-5565-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
12, 5565–5599, 2015

Joint inference of
recharge and
conductivity

D. Erdal and O. A. Cirpka

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

rameters Φ. While the updating procedure leads to modifications of the parameters,
the original prior knowledge carries over. Spatial patterns that are in contradiction to
the prior knowledge cannot be recovered by the scheme. In our application, Φ con-
tains parameters describing both aquifer properties and boundary conditions and, as
we have shown above, the effects of these two types of parameters on the measured5

heads can be similar. Hence, the prior knowledge determines which combined pat-
terns of hydraulic conductivity and recharge are inferred by the scheme. If the prior
knowledge is erroneous, the estimated fields may also be erroneous.

3.2 Setup of a synthetic experiment

For testing the possibilities and limitations in jointly estimating conductivity and10

recharge, we have set up a synthetic 2-D example of transient flow in an unconfined
aquifer. The model setup is shown in Fig. 2 and consists of spatially variable recharge
with a temporal seasonal trend, spatially variable conductivity, a temporally variable
southern boundary corresponding to a river, as well as 5 pumping wells. More techni-
cal details about the setup is found in Table 1. Observations of groundwater heads are15

taken daily at 45 observation wells spread throughout the domain during a 1 year sim-
ulation and assuming an observation error of 1 cm. The recharge and log-conductivity
fields are both sampled as random fields with anisotropic, exponential covariance func-
tions and strong rotation of the principal directions of anisotropy (Table 2). it should be
noted that here the conductivity and recharge fields are uncorrelated. This could, for20

example, represent a scenario in which the recharge is primarily controlled by variable
land use and vegetations while the conductivity is a constant material property.

For the estimation of the recharge and conductivity fields, we apply the Ensemble
Kalman filter using an ensemble of 2000 members. As this work aims at exploring which
prior knowledge is required for the estimation process, three different cases of prior25

knowledge are considered. In the first, the initial ensemble members are drawn from
the same (hence correct) distribution as the reference (true) field. The second case is
identical to the first apart from the rotation angle of the anisotropy being randomly cho-
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sen for each ensemble member. In the third case, the rotation angle is fixed but wrong.
Here, the recharge is sampled using the rotation angle and correlation lengths of the
true conductivity field and vise versa, creating a rather problematic initial ensemble. A
plot of the three correlation structures can be found in the bottom of Fig. 3 in Sect. 4
where the three initial ensembles are called the “good”, “random” and “wrong” ones.5

Please note that the correlation plot for the random initial is only meant as an illustra-
tion of the fact that each ensemble has a unique rotation angle and does not show the
actual angles considered.

The goodness of the resulting fields are judged in two ways. First, the ensemble
mean of the fields are visually compared to the reference fields and subjectively judged10

to be similar or not. Second, the normalized root mean square error of the simulated
heads in the 45 observation wells is computed by:

NRMSE =

√√√√√√ 1
ntnobs

t2∑
t=t1

nobs∑
i=1

(
htrue(i ,t)−h(i ,t)

)2

σ2
h

(15)

where nt is the number of temporal observations between t1 and t2, nobs the number

of observation locations (here 45), h(i ,t) is the ensemble mean head observation at15

position i and time t, htrue is the corresponding true value, and σh is the measurement
uncertainty of hydraulic-head observations. This gives a quantitative metric of judging
the actual performance of the estimated model. We assimilate head observations from
day 50 to day 300, while the remaining 65 days of the one-year data is used to test the
model’s predictive capabilities. This results in an assimilation error for judging how well20

the assimilation went and a prediction error for judging the models predictive powers. It
should be noted that to properly asses the predictive power of the model in a scenario
different to the one used for the assimilation, one of the four wells shown in Fig. 2 only
starts pumping at day 301.
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We have combined the three different prior distributions with three different estima-
tion problems, namely the estimation of (a) recharge alone, (b) hydraulic conductivity
alone, and (c) recharge and hydraulic conductivity together, leading to a total of nine
different scenarios. In the stand alone scenarios, all other parameters and settings are
assumed known and, hence, set to their true values. As can be seen from Fig. 2, the5

recharge not only shows a strong spatial pattern but also a temporal trend. In the esti-
mations shown below, this temporal trend is assumed known. We have also conducted
successful assimilations also estimating the trend parameter. However, as the absolute
recharge values of these tests may vary with the absolute value of the scaling param-
eter, the results are less intuitive to display and therefore only the assimilations with10

known trend function are shown.

4 Results and discussion

4.1 Stand-alone estimation of recharge or conductivity

The simplest of the estimation problems presented in this study is the stand-alone es-
timation of recharge, since the hydraulic heads depend linearly on recharge. This is15

reflected in the estimated recharge fields shown in Fig. 3. As expected, the best re-
sults are achieved with the best initial estimate (second column). However, also the
estimates using the covariance functions with the random and wrong orientations of
anisotropy show in large the right pattern. Table 3 quantitatively confirms these qualita-
tive findings by low values of the normalized root mean square error of predicted heads.20

From the last column in Fig. 3 we see that, although the filter manages to produce
a reasonable ensemble mean of the recharge field, the similarity with the covariance
function used to create the initial ensemble is still very prominent. This is especially so if
one starts considering individual ensemble members (not shown), and it demonstrates
how sensitive the EnKF method is to the initial guess, even in this linear problem.25
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It is important to keep in mind that the ensemble size is large so that the plots of the
ensemble means shown in Fig. 3 are smoothed. It is not expected that the smooth en-
semble estimate exhibits the same extreme values as those seen in the true parameter
distribution, whereas individual ensemble members should show the same variability
as the (unknown) reference field.5

In comparison to estimating the recharge fields, the estimation of conductivity fields
alone is more complicated. Here, the nonlinearities of Eq. (1) affects the estimation.
More importantly, the orientation of the anisotropy of heterogeneity plays a vital role in
the behavior of groundwater flow. This is also seen in the final estimates of the con-
ductivity fields, shown in Fig. 4, where the only reasonable result is achieved if the right10

pattern is assumed in the prior knowledge (second column) or if the prior pattern is
random (third column). The reasonable performance of the prior distribution with dif-
fuse knowledge about the anisotropy orientation may be explained by the large initial
ensemble containing some members with reasonable patterns and decent behavior. In
the case that the orientation of anisotropy is assumed erroneously in the prior knowl-15

edge (fourth column), the filter completely fails to produce any result similar to the
truth. This finding does not depend on the ensemble size. The prediction errors listed
in Table 3 clearly confirm the visual impression.

The prediction errors listed in Table 3 emphasize that estimating recharge leads
to smaller errors in predicting heads then the estimation of the hydraulic-conductivity20

field. This could indicate that improvements of the estimated conductivities are more
important for lowering the prediction error, which would follow the findings of Hen-
dricks Franssen et al. (2004). As pointed out above, the higher errors when estimating
conductivities are likely related to the head value in a cell depending not only on the
conductivity of that cell but to the macroscopic anisotropy of hydraulic conductivity in25

the entire aquifer.
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4.2 Joint estimation of recharge and conductivity

As derived in Sect. 2, joint estimation of recharge and conductivity fields is impossi-
ble without prior knowledge about either of the two quantities. In Bayesian inversion
methods, however, prior knowledge is assumed anyway. In the EnKF method, the prior
information is conveyed by the initial ensemble drawn from the prior distribution. By5

this, the jointly estimated recharge and conductivity fields are unique and reproducible
in a statistical sense. The remaining question is whether these estimates also resemble
the true fields and whether they are good for prediction purposes.

Figure 5 shows the results of the joint estimation using the three different initial en-
sembles. If the initial ensemble is good, that is the reference fields are drawn from the10

same statistical distribution as the initial ensemble, it is possible to estimate both con-
ductivity and recharge with reasonable precision, given the number and accuracy of
observations (second column). When the initial ensemble is poor, however, the result
is rather poor for the recharge and more blurry for the conductivity (third column), or
we infer fields that look good but are wrong (last column).15

As shown theoretically in Sect. 2, it is always possible to compensate a missing or
wrong conductivity with a recharge, and this is also clearly seen in the last column of
Fig. 5: the estimated recharge shows remarkable similarity with the reference conduc-
tivity field. This shows that the issue of trading one quantity for the other is not only
a theoretical issue, but also relevant in practice. The lacking ability of the random and20

wrong initial ensemble estimates with respect to predicting heads under conditions not
encountered in the calibration period are documented in Table 3, where the prediction
errors caused by the poorly estimated fields are often an order of magnitude larger then
those resulting from a good estimation. It is interesting to note that the error obtained
throughout the assimilation, shown in Table 4, is not a good indicator for the predic-25

tive capabilities of the various models, as quantified by the prediction errors listed in
Table 3. There are differences in the assimilation error both within and between the
different estimation setups, but it would to be difficult to foresee that the joint estimation
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is performing much better with the good prior compared to the poorer ones. The same
behavior is illustrated with an example of two observations wells in Fig. 6, from which
it is clearly shown that all approaches has a good fit during assimilation but that the
wrong prior deviates during the predictions. From a practical standpoint of view this
highlights that it is important have relevant validation data to test the predictive power5

of a model when performing data assimilation with parameter update by EnKF (or any
other approach).

Like in the scenarios in which only recharge or only conductivity were estimated,
the mean joint estimate lack the extreme values of the reference fields. As discussed
above, such behavior is expected for the smooth best estimate even in cases where the10

scheme works perfectly fine. Individual ensemble members show significantly stronger
variability. We consider the results from the good initial ensemble as good, since they
capture the main patterns of the parameter fields well and have, overall seen, rea-
sonable absolute parameter values. For purposes of transport predictions, we would
recommend using the entire ensemble rather than the ensemble mean. In case of15

the estimates using the wrong prior knowledge, in particular where the orientation of
anisotropy is chosen randomly, the fluctuations cannot be aligned well in the right direc-
tion, and averaging over features oriented in all directions lead to particularly smooth
estimates of the mean.

5 Conclusions20

In the present study we have shown that it is possible to jointly estimate reasonable
fields of hydraulic conductivity (or its logarithm) and recharge as spatially fluctuating
fields from pure head observations provided that the statistics of the true fields are fairly
well understood. Starting with wrong assumptions about conductivity and recharge
patterns can lead to aliasing, in which not detected features of hydraulic conductivity25

are traded for erroneous fluctuations in recharge.
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In real-case applications, the prerequisite of a good prior can pose a severe prob-
lem because the true spatial patterns may be widely unknown. From a more technical
standpoint of view it may be noteworthy that a rather common way of setting up a syn-
thetic groundwater-EnKF test is to generate a large ensemble of realizations and use
one of them as the truth and the rest as the initial ensemble. By this it is guaranteed5

that the statistics of the initial ensemble is perfect and, as shown here, a good result
can be expected. Unfortunately, in real-world applications the geostatistics of (log)-
hydraulic conductivity are typically quite uncertain so that the good performance of a
scheme, involving both the measurement strategy and the inverse method, in an overly
optimistic test case regarding prior knowledge may not be transferable. We thus highly10

recommend to design realistic test cases that include potential bias in prior knowledge.
In the present work, we only used head data for data assimilation and parameter

estimation, while in reality probably at least a vague idea of conductivity values could
be available from the bore holes required for the observations, and the patterns of
recharge should reflect land use and soil types, which are accessible information. Spa-15

tially variable recharge may also be constrained by the use of remote sensing informa-
tion (Brunner et al., 2006; Hendricks Franssen et al., 2008). These type of data could
either be used as observations in the assimilation or to condition the initial ensemble
(Sun et al., 2009; Panzeri et al., 2013). The latter can also be related to the popu-
lar method of multiple-point statistics, where the use of training images which should20

represent relevant spatial correlation patterns have been used to condition conductiv-
ity fields (see Okabe and Blunt, 2004; Hu and Chugunova, 2008). The combination
of assimilating head data and the use of training images to condition the ensembles
has also been tested with promising results (Li et al., 2013). The combination of these
approaches could prove a possible way to perform joint estimation of conductivity and25

recharge fields with a lowered risk of conductivity-to-recharge aliasing due to wrong
prior knowledge.
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Table 1. Pumping rates and general model setup∗.

Pump 1 2 3 4 5
Rate (m3 h−1) 9 18 90 0.09 0.9
Start (day) 20 300 200 0 0
Stop (day) 150 365 360 370 300

Model setup ∆x (m) ∆y (m) dt (h) z0 (m) poro (–)
50 50 6 0 0.4

∗ Pumps are numberd as in Fig. 2, z0 and poro are the homogeneous bedrock
elevation and porosity.
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Table 2. Parameters and properties used for the generation of the synthetic examples conduc-
tivity and recharge fields∗.

ln(K ) R
ln (m s−1) (mm day−1)

µ −8.5 −0.7
σ 1.7 0.1

α (◦) 291 17
lx (m) 2000 5000
ly (m) 600 500

∗ µ is the mean, σ the variance, α the
rotation angle and lx and ly are the
correlation lenghts in x and y direction,
respectively.
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Table 3. Normalized root mean square error for the prediction period∗.

Good Random Wrong

R 1.3 1.6 1.9
K 2.6 3.1 17.4
R &K 6.0 13.5 15.0

∗ According to Eq. (15) for three setups of prior
knowledge (good, random, wrong) to estimate
recharge alone (R), conductivity alone (K ) and
to jointly estimate conductivity and recharge
(R &K ).
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Table 4. Normalized root mean square error for the assimilation period.

Good Random Wrong

R 0.3 0.4 0.5
K 1.2 0.9 3.7
R &K 2.2 2.4 3.7
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Figure 1. Illustrative example of replacing a heterogeneous conductivity field (left column pan-
els) with a homogeneous conductivity and an effective recharge (right column panels). Please
note the different scale on the third recharge plot.
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Figure 2. Setup of the synthetic test case used for the parameter field estimations.
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Figure 3. Estimation of stand-alone recharge. Upper panels show the ensemble mean and
lower plots the covariance function used to generate the initial ensemble. Please note that
the random covariance functions imply drawing the rotation angle from a uniform distribution
between 0 and 2π, whereas only a few illustrative examples are shown.
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Figure 4. Estimation of stand-alone conductivity. Upper panels show the ensemble mean and
lower plots the covariance function used to generate the initial ensemble. Please note that only
a few illustrative examples of the random orientation angle of anisotropy are shown.
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Figure 5. Joint estimation of recharge (top row panels) and conductivity (middle row panels).
Shown is the ensemble mean and the covariance functions used to generate the initial ensem-
bles (bottom row panels).
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Figure 6. Two head observations plotted over time for the joint estimation of recharge and
conductivity. Shown is the ensemble mean. Assimilation is performed from day 50 to day 300
while the remaining days are considered for prediction.
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